MODULO 3

CONTINUITÀ DELLE FUNZIONI

- ➤ DEFINIZIONE DI CONTINUITÀ IN UN PUNTO Una funzione y = f(x) si dice continuo in un punto x_0 appartenente al dominio di f, se $\lim_{x \to x_0} f(x) = f(x_0)$. Ciò significa che (1) esiste $f(x_0)$, (2) $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l$ e (3) $l = f(x_0)$.
 - O Dimostrare che $f(x) = \begin{cases} \cos x & x \le 0 \\ x^2 + 1 & x > 0 \end{cases}$ è continua in x = 0 mentre le funzione $f(x) = \begin{cases} \cos x & x \le 0 \\ x^2 + 2 & x > 0 \end{cases}$ non lo è.
- ➤ DEFINIZIONE DI CONTINUITÀ IN UN INTERVALLO Una funzione y = f(x) si dice continuo in un intervallo (a,b) contenuto nel dominio di f, se $\lim_{x \to x_0} f(x) = f(x_0)$ per ogni $x_0 \in (a,b)$.
 - o I polinomi, le funzioni $y = \sin x$, $y = \cos x$, $y = e^x$ sono continue in tutto R.
 - Le funzioni razionali fratte sono continue in tutti i punti in cui non si annulla il denominatore.
 - La funzione y = tgx è continua per ogni $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$
 - \circ La funzione y = ln x è continua nel suo dominio.
- > TEOREMI SULLE FUNZIONI CONTINUE:
 - O Teorema di Weierstrass Se y = f(x) è una funzione continua in un intervallo chiuso e limitato [a,b] allora la funzione ammette un massimo e un minimo assoluti.
 - o Teorema di Bolzano Se y = f(x) è una funzione continua in un intervallo chiuso e limitato [a,b] allora ammette almeno un volta tutti i valori compresi tra il minimo e il massimo.
 - o Teorema dell'esistenza degli zeri Se y = f(x) è una funzione continua in un intervallo chiuso e limitato [a,b] e assume valori opposti agli estremi dell'intervallo, allora esiste almeno un punto c interno all'intervallo in cui la funzione si annulla.

- Operazioni con le funzioni continue: se due funzioni f(x) e g(x) sono continue, allora anche f(x)+g(x), f(x)-g(x) e $f(x)\cdot g(x)$ lo sono; la funzione $\frac{f(x)}{g(x)}$ è continua in tutti i punti in cui si ha $g(x) \neq 0$.
- O Teorema della funzione inversa Se y = f(x) è una funzione continua in un insieme D e è ivi invertibile, allora la funzione inversa è continua nell'insieme f(D).
- Teorema sulla continuità delle funzioni composte Sia data la funzione y = f[g(x)]; se $\lim_{x \to x_0} g(x) = l$ (l valore finito) e se y = f(x) è una funzione continua per x = l, allora $\lim_{x \to x_0} f[g(x)] = f[\lim_{x \to x_0} g(x)] = f(l)$ Se poi y = g(x) è continua per $x = x_0$, allora y = f[g(x)] è anche continua.

> PUNTI DI DISCONTINUITÀ

- o prima specie: limiti sinistro e destro finiti, ma $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$
- o seconda specie quando non esiste o non è finito almeno uno dei due limiti destro e sinistro
- o terza specie o eliminabile quando esiste finito $\lim_{x \to x_0} f(x) = l$, ma $f(x_0)$ o non esiste o non è uguale ad l.