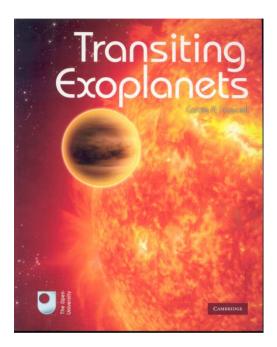


Laurea triennale in Fisica a.a. 2012 - 2013


CORSO DI ASTRONOMIA

MATERIALI DI RIFERIMENTO

www.df.unipi.it/~penco/Astronomia/

Appunti delle lezioni in formato testo e/o Powerpoint

www.angeloangeletti.it

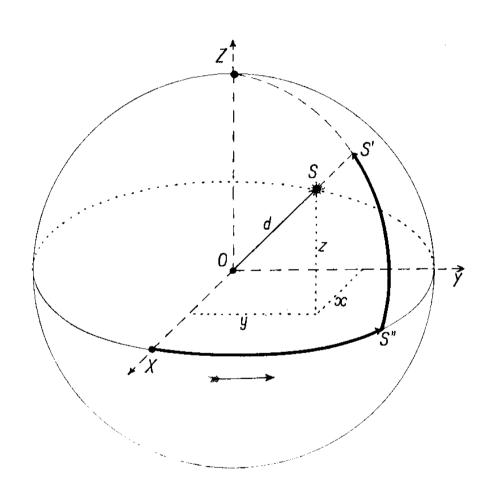
Astronomia

Dal greco $\alpha\sigma\tau\rho\sigma\nu$ (astro) e $\nu\sigma\mu\sigma\sigma$ (legge), è la scienza che studia le posizioni relative, il moto, la struttura e l'evoluzione degli astri.

Diverse discipline concorrono oggi allo studio dell'Universo.

- •L'Astronomia di posizione o Astrometria (è la più antica)
- •La Meccanica Celeste (insieme costituiscono l'Astronomia fondamentale o classica).

Nella seconda metà del XIX secolo è nata l'Astronomia Moderna:

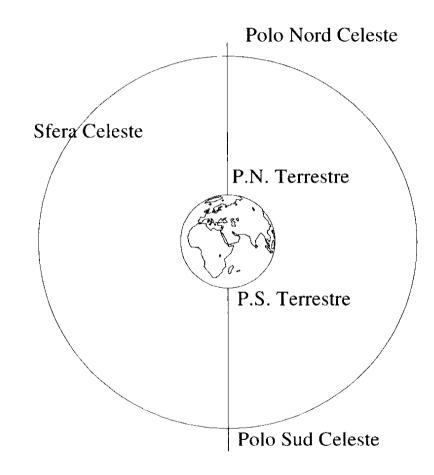

- •L'Astrofisica (studia la fisica e l'evoluzione degli oggetti dell'Universo):
 - •Astrofisica delle alte energie (studio dell'irraggiamento g, X e ultravioletto)
 - •Astrofisica delle basse energie (irraggiamento nel visibile, infrarosso e radio). Un'altra distinzione viene fatta tra:
 - •Cosmogonia che studia la formazione e l'evoluzione dei corpi celesti particolari (stelle, pianeti, galassie, ecc)
 - •Cosmologia che cerca di spiegare la formazione e l'evoluzione dell'Universo considerato nella sua totalità.
- •L'Astrochimica (si interessa della chimica extraterrestre)
- •La Bioastronomia o Esobiologia o Astrobiologia che studia la possibilità di vita nel cosmo.

Principio di uniformità della Natura

LE LEGGI DELLA NATURA SONO LE STESSE IN TUTTE LE PARTI DELL'UNIVERSO

Principio Copernicano

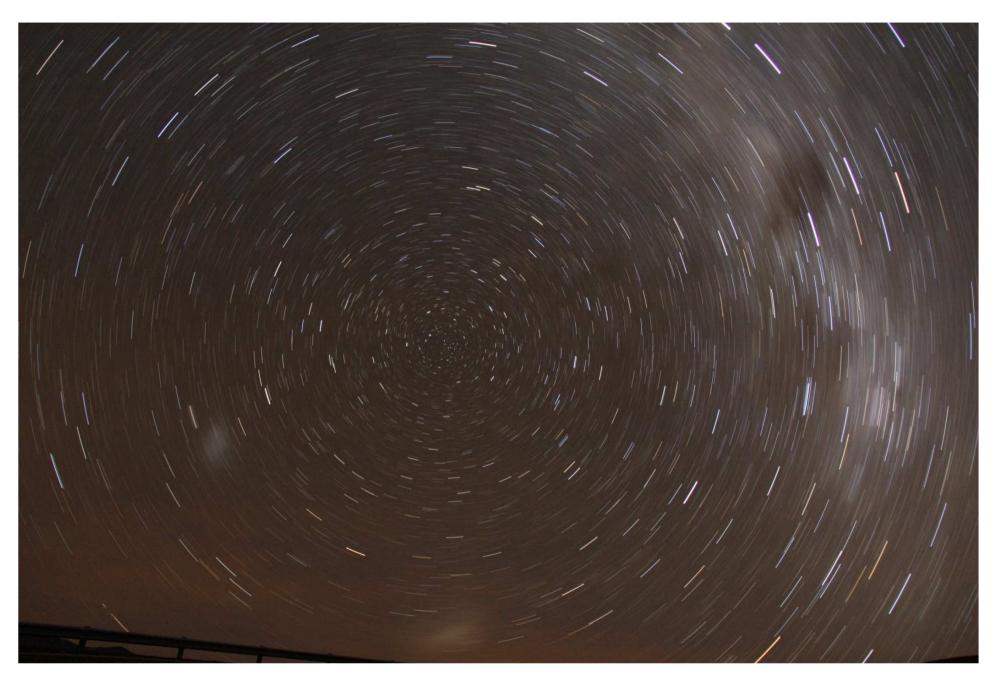
LA TERRA NON OCCUPA UNA POSIZIONE SPECIALE NELL'UNIVERSO



POLI CELESTI: punti fissi della volta celeste attorno ai quali sembra ruotare la volta celeste.

ASSE DEL MONDO: retta che congiunge i poli celesti

POLO NORD CELESTE: punto di rotazione della sfera celeste nell'emisfero nord

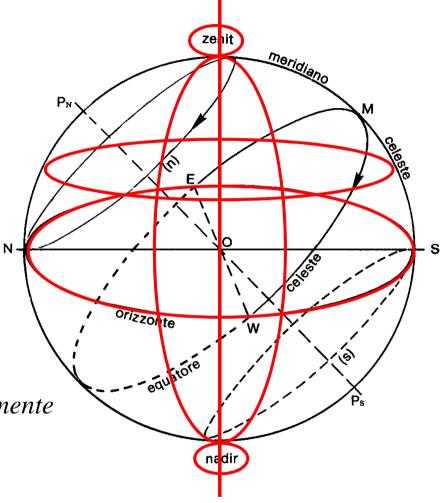

POLO SUD CELESTE: punto di rotazione della sfera celeste nell'emisfero sud.

Rotazione della volta celeste - Nord

Rotazione della volta celeste - Sud

Rotazione della volta celeste - Ovest

Rotazione della volta celeste - Est



ORIZZONTE CELESTE: proiezione dell'orizzonte dell'osservatore sulla sfera celeste.

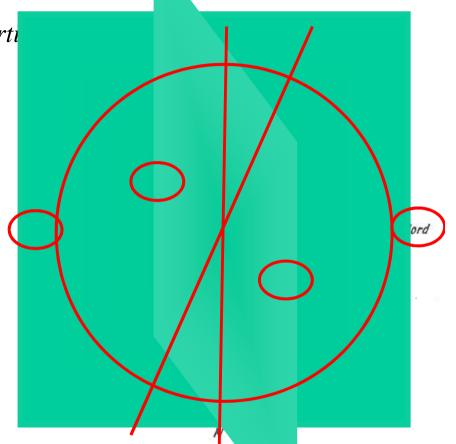
VERTICALE ASTRONOMICA: retta verticale per l'osservatore all'orizzonte celeste = direzione del filo a piombo.

ZENIT: punto della sfera celeste in cui la verticale celeste incontra la sfera celeste sopra l'osservatore.

NADIR: punto della sfera celeste diametralmente opposto allo Zenit.

CERCHI DI ALTEZZA: cerchi di intersezione di piani paralleli all'orizzonte celeste con la sfera celeste.

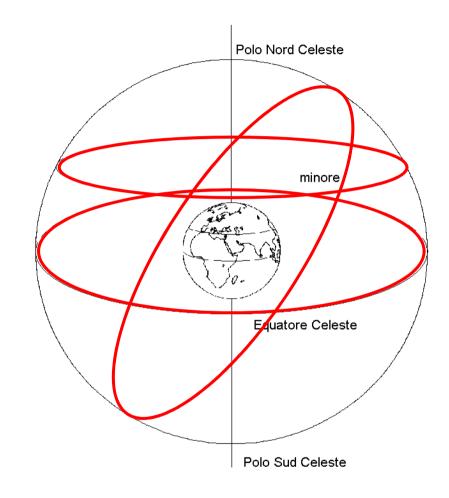
CERCHI VERTICALI: cerchi massimi della sfera celeste ottenuti dalla intersezione con piani verticali


PIANO MERIDIANO: piano definito dalla verti astronomica e dall'asse del mondo.

MERIDIANO CELESTE: circonferenza della sfera celeste definito dell'intersezione con il piano meridiano.

La sua intersezione con l'orizzonte celeste definisce il Nord (dalla parte del Polo Nord Celeste) e il Sud (dalla parte del Polo Sud Celeste)

PRIMO VERTICALE: piano definito dalla verticale e dalla normale per O al piano meridiano.


La sua intersezione con l'orizzonte celeste definisce l'Est e l'Ovest, disposti in senso orario da Nord verso Sud.

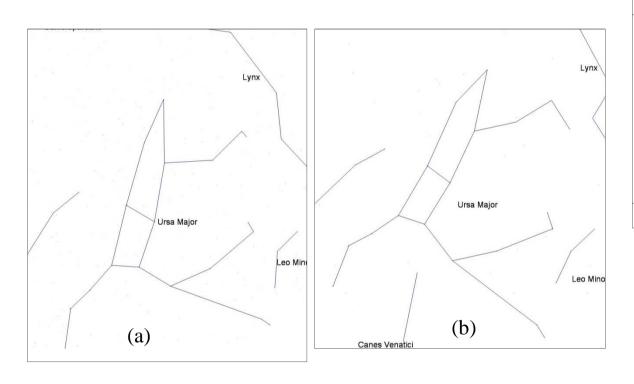
CERCHIO MASSIMO: intersezione di un piano passante per il centro con la sfera celeste.

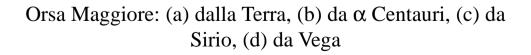
CERCHI MINORI: cerchi determinati da piani non passanti per il centro.

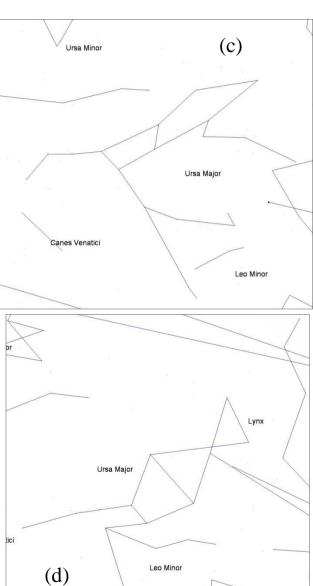
EQUATORE CELESTE: proiezione dell'equatore terrestre sulla sfera celeste, ovvero intersezione del piano perpendicolare all'asse del mondo.

MEZZOCIELO: punto di intersezione dell'equatore celeste con il meridiano celeste

Le costellazioni sono raggruppamenti arbitrari di stelle, sulla sfera celeste, noti fin dall'antichità.

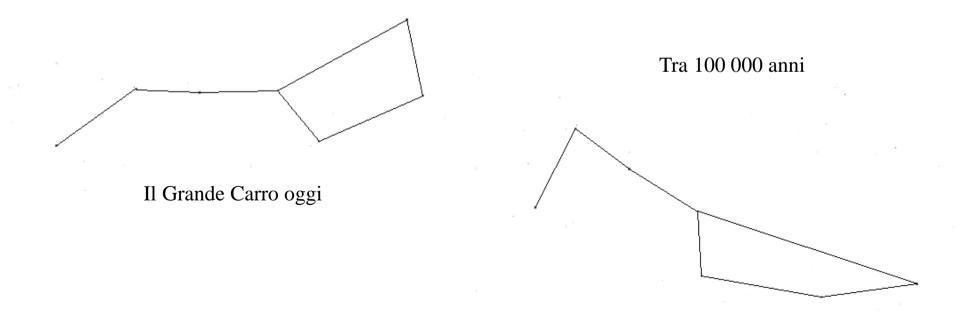

Oggi: ognuna delle 88 parti in cui la sfera celeste è convenzionalmente suddivisa allo scopo di mappare le stelle. Una costellazione "ufficiosa" si chiama *asterismo* (ad esempio il Grande Carro non è una costellazione ufficiale)


Sono delle entità esclusivamente prospettiche, a cui non si riconosce alcun reale significato, infatti:


nello spazio tridimensionale le stelle che di una stessa costellazione possono essere separate anche da distanze enormi,

due o più stelle che sulla sfera celeste appaiono lontane, nello spazio tridimensionale possono essere separate da distanze minori di quelle che le separano dalle altre stelle della propria costellazione,

la forma della costellazione dipende dall'osservatore



nel corso del tempo sono state definite costellazioni differenti, alcune sono state aggiunte, altre sono state unite tra di loro

nel corso del tempo, a causa del moto proprio delle stelle, le costellazioni cambiano.

L'IAU (International Astronomical Union) provvede all'assegnazione dei nomi delle stelle e degli altri corpi celesti.

La maggior parte delle stelle poco brillanti, e quasi tutte quelle non visibili ad occhio nudo, non hanno nome e per riferirsi ad esse si usano i numeri di catalogo.

Molte delle stelle più brillanti, o interessanti per altri motivi, hanno nomi propri. La maggior parte deriva dall'arabo, ma ci sono alcuni nomi derivati dal latino, dal greco e da altre fonti, tra cui anche l'inglese.

Nel 1603 l'astronomo tedesco Johann Bayer (1572 – 7 marzo 1625), pubblicò il primo atlante stellare completo: Uranometria.

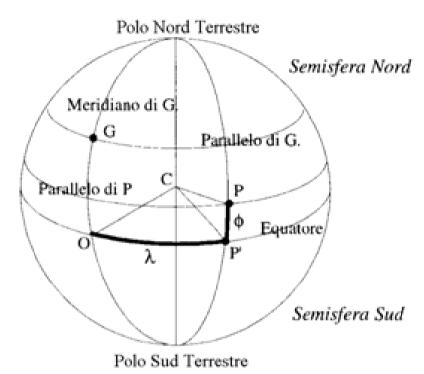
Introdusse un sistema di nomenclatura per le stelle più brillanti di ogni costellazione: una lettera dell'alfabeto greco, seguita dal nome latino della costellazione (per esempio Betelgeuse è alfa Orionis), a partire dalla stella più luminosa (al posto del nome della costellazione, quando si scrive si mette un'abbreviazione di tre lettere, per esempio a Ori è alfa Orionis).

Il sistema di Bayer è ancora oggi molto usato.

Flamsteed (Denby, 19 agosto 1646 – Greenwich, 12 gennaio 1719) ideò un sistema per assegnare nomi alle stelle simile a quello di Bayer, ma che usa i numeri.

Ad ogni stella è assegnato un numero, più il genitivo latino del nome della costellazione in cui si trova.

Per ogni costellazione il conto ricomincia da 1.


I numeri furono originariamente assegnati alle stelle in base alla loro posizione (in ordine crescente di Ascensione Retta in ogni costellazione), ma a causa degli effetti della precessione e dei moti propri stellari, alcune oggi sono in ordine sbagliato.

Esempi: 51 Pegasi (la prima stella intorno alla quale è stato riconosciuto un pianeta) e 61 Cygni (la prima stella di cui si è misurata la parallasse).

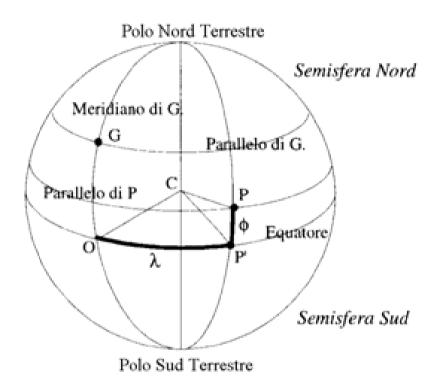
Coordinate geografiche

Sulla sfera terrestre, siano N e S i poli Nord e Sud rispettivamente.

Definiamo *paralleli* tutti e soli i cerchi ottenuti dall'intersezione di piani paralleli all'Equatore con la sfera terrestre. Su usa il termine paralleli nord per i cerchi contenuti nella semisfera che contiene il polo Nord, e paralleli sud per quelli contenuti nell'emisfero Sud. Indichiamo i paralleli Nord anche premettendo +, e i paralleli Sud premettendo –

I **meridiani** sono tutti i cerchi massimi passanti per entrambi i Poli, li indicheremo con un numero a partire da un meridiano scelto come meridiano zero, positivo in un determinato verso di percorrenza, negativo nell'altro.

Per determinare la posizione di P sulla sfera è basta misurare l'angolo OCP', indicato con λ , è la *longitudine* di P, e l'angolo P'CP, indicato con φ , è la *latitudine* di P.

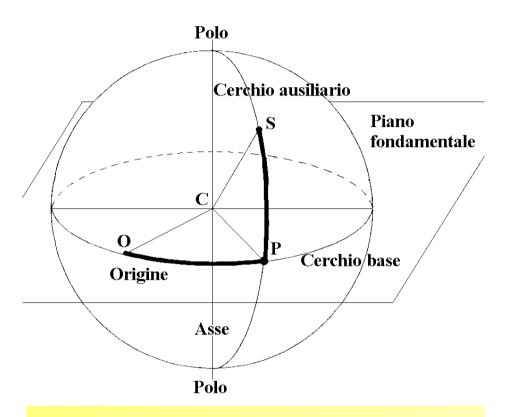

Coordinate geografiche

Come meridiano fondamentale o *meridiano origine* si assume il meridiano passante per l'Osservatorio di Greenwich, esattamente quello che passa per il centro dell'antico strumento dei passaggi di Flamsteed.

Prende il numero zero e viene comunemente detto *meridiano zero*.

La posizione di un punto sulla Terra sarà data da una coppia di coordinate λ , ϕ di questo punto.

Le latitudini vanno da +90° a -90°.



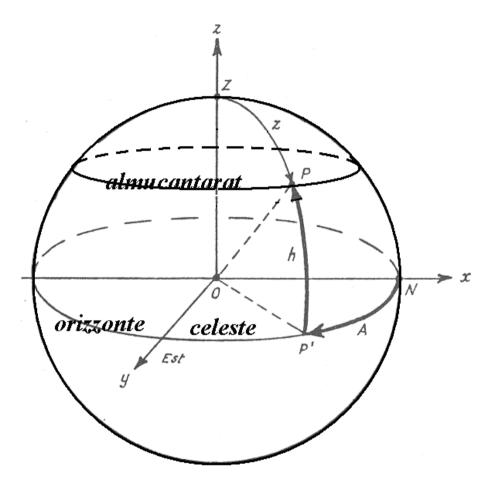
Le longitudini vanno da 0° a 360°.

Per le longitudini a volte si utilizzano angoli da 0 a 180° nel verso antiorario e da 0 a -180° nel verso orario, oppure le ore (ogni ora equivale a 15°, crescendo da Greenwich verso est)

Per determinare un sistema di riferimento sulla sfera:

- 1) Si sceglie un asse (che determina i poli, il piano fondamentale, il cerchio base e i cerchi ausiliari).
- 2) Sul cerchio base di sceglie l'origine O e un verso di percorrenza.
- 3) Dato un punto S sulla superficie sferica si traccia il cerchio ausiliario passante per esso che determina il punto P intersezione del cerchio ausiliario col cerchio base.
- 4) Dall'origine, sul cerchio base, verso P si determina l'ascissa sferica.
- 5) Da P, lungo il cerchio ausiliario, verso S si determina l'ordinata sferica.

Due tipi di sistemi di coordinate: locali e assoluti.


Locali: sistema altazimutale e sistema orario o equatoriale locale.

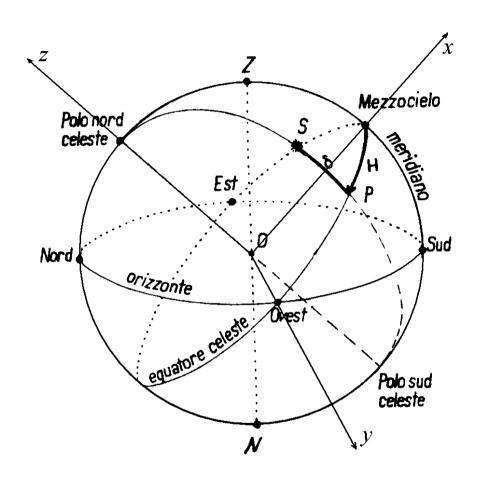
Assoluti: sistema equatoriale assoluto, sistema eclitticale e sistema galattico

SISTEMA ALTAZIMUTALE

Per indicare la posizione di un astro S occorrono le due coordinate: l'*altezza* (h) e l'*azimut* (A). L'altezza è l'arco di cerchio verticale compreso fra S ed il punto in cui tale cerchio taglia l'orizzonte; l'azimut è l'arco di orizzonte compreso fra il punto sud ed il punto in cui il meridiano taglia l'orizzonte.

L'altezza si conta da 0° (orizzonte astronomico) fino a + 90° (zenit) e fino a - 90° (nadir).

Le altezze negative indicano astri sotto l'orizzonte.

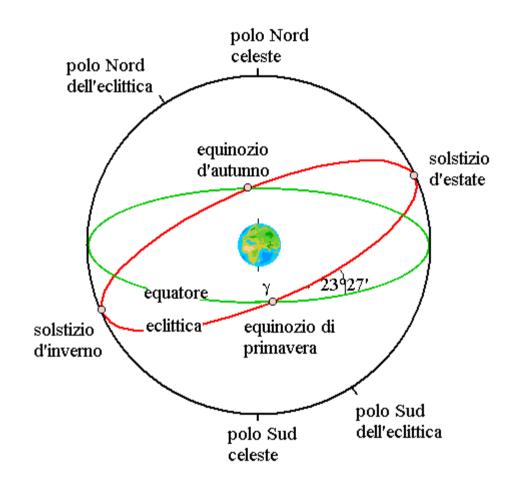

L'azimut va da 0° (punto nord) fino a 360° (che è nuovamente il punto nord) nel senso *Est*, *Sud*, *Ovest* che hanno rispettivamente azimut 90°, 180° e 270°.

SISTEMA ORARIO O EQUATORIALE LOCALE

Le coordinate di un astro S sono dette *declinazione* (δ) ed *angolo orario* (H).

La declinazione è l'arco di cerchio compreso fra S e l'equatore; si misura in gradi dall'equatore (+ verso il polo nord, - verso il polo sud). Analogamente alla latitudine sulla Terra, la declinazione dei poli celesti nord e sud è rispettivamente + 90° e -90°, e quella dell'equatore è 0°.

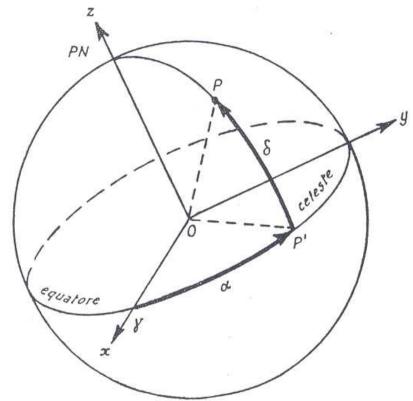
L'angolo orario si misura in gradi, da zero a 360°, in verso orario a partire dal mezzocielo.


Dato l'evidente legame con la rotazione della terra, l'angolo orario si misura anche in ore.

Eclittica

Nel corso di un anno il Sole descrive apparentemente sulla sfera celeste un cerchio massimo che prende il nome di *eclittica* (dell'epoca).

Il moto del Sole appare avvenire lungo le dodici costellazioni dello zodiaco.


Il punto in cui l'eclittica interseca l'equatore celeste, nel verso ascendente si chiama *primo punto d'Ariete* o *punto vernale* o ancora *punto gamma γ*.

SISTEMA EQUATORIALE (ASSOLUTO)

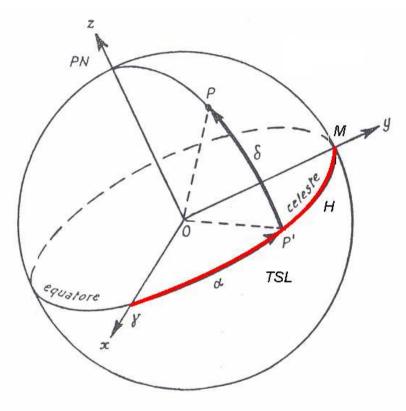
Gli elementi di riferimento sono quelli già introdotti nel sistema di coordinate equatoriali locali, tuttavia la terna di assi cartesiani con origine in O ora ha l'asse x diretto verso un punto fisso della sfera celeste (il punto γ) e la terna è ora levogira.

Il punto fisso è ancora il *punto gamma* γ .

In realtà il punto γ non è fisso a causa della precessione degli equinozi e quindi si ha una variazione delle coordinate equatoriali.

È necessario far riferimento alla posizione di γ ad una data epoca.

Ogni punto P (poli esclusi) della sfera celeste rimane individuato dagli angoli $\gamma \hat{O}P'$ e P' $\hat{O}P$, rispettivamente detti *ascensione retta* α e *declinazione* δ .


L'ascensione retta si misura in verso antiorario (o diretto) in ore da zero a 24 h, la declinazione come già detto.

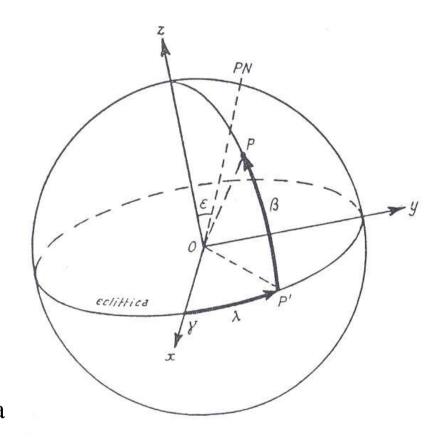
Quando un astro transita al meridiano, il suo angolo orario è zero. Un'ora dopo la volta celeste avrà ruotato di un arco di 15° (= 360°/24 ore) e l'angolo orario dell'astro sarà pari a 1 h o 15°.

Anche il punto γ ha un proprio valore dell'angolo orario che varia nel tempo che viene chiamato *Tempo Siderale Locale* (*TSL* o anche t_s).

Il TSL è la somma dei valori assoluti degli archi γ P' (l'ascensione retta dell'astro) e P'M (l'angolo orario H dell'astro). Si ricava una importante relazione:

$$TSL = H + \alpha$$
.

È evidente che lo zenit dell'osservatore ha declinazione uguale alla latitudine geografica e ascensione retta uguale al TSL. Da ciò si ricava anche che:


per conoscere il tempo siderale locale è sufficiente conoscere l'ascensione retta della stella che transita al meridiano locale in quel momento.

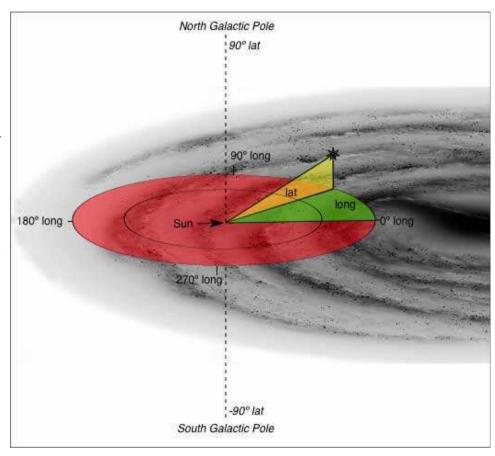
SISTEMA ECLITTICO

Nel sistema di coordinate eclittiche gli elementi di riferimento sono l'eclittica (dell'epoca) e la perpendicolare all'eclittica stessa.

La terna cartesiana con origine in O è levogira con l'asse x diretto verso il punto γ .

Ogni punto P sulla sfera celeste (esclusi i poli dell'eclittica) è individuato dagli angoli γ ÔP' e P'ÔP, detti rispettivamente *longitudine eclittica* λ e *latitudine eclittica* β e misurati entrambi in gradi, il primo da zero a 360° (in verso antiorario) e il secondo da zero a $\pm 90^{\circ}$ a seconda che P sia sopra o sotto l'eclittica.

Risulta che il polo Nord ha coordinate eclittiche $\lambda=90^\circ$ e $\beta=90^\circ$ - ϵ .

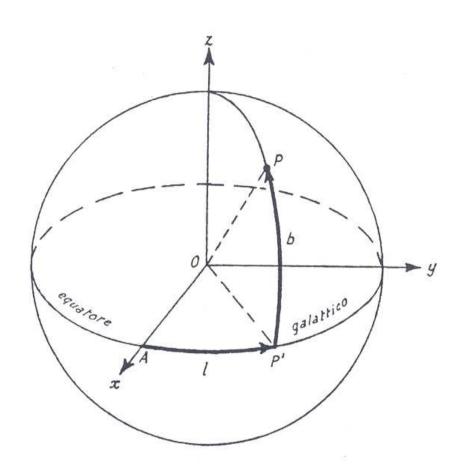

L'angolo ε (=23°27') è *obliquità dell'eclittica* e varia nel tempo, di conseguenza variano le coordinate eclittiche. Si deve far riferimento all'eclittica di una data epoca.

Il sistema è utile in tutti i problemi di astronomia planetaria poiché i pianeti si muovono attorno al Sole su orbite quasi complanari con l'eclittica.

SISTEMA GALATTICO

Gli elementi di riferimento sono il piano equatoriale della Galassia e la sua perpendicolare.

Questo piano fu definito in due momenti successivi, dapprima mediante conteggi stellari, e successivamente, nel 1976, come piano di massima emissività della riga 21 cm dell'idrogeno neutro interstellare.

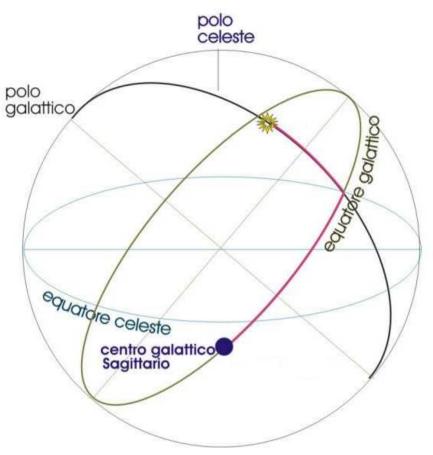

SISTEMA GALATTICO

Il polo nord galattico è definito alle coordinate equatoriali

 $\alpha = 12h 49m e \delta = 27^{\circ} 24' al 1950$

e si trova nella costellazione della Coma.

La tema cartesiana di riferimento con origine nell'osservatore O è levogira con l'asse x orientato verso il centro galattico, che è localizzabile in prossimità della radiosorgente Sagittarius A e che ha coordinate $\alpha = 17h$ 42m,4 e $\delta = -28^{\circ}55'$ (sempre al 1950)



SISTEMA GALATTICO

Il sistema, riferito al 2000 ha il polo nord galattico a α = 12h 51m 26,282s , δ = +27° 07′ 42,01″.

Il punto del cielo in cui sia latitudine che longitudine sono pari a 0 è $\alpha = 17h$ 45m 37,224s, $\delta = -28^{\circ}$ 56′ 10,23″ (sempre al 2000).

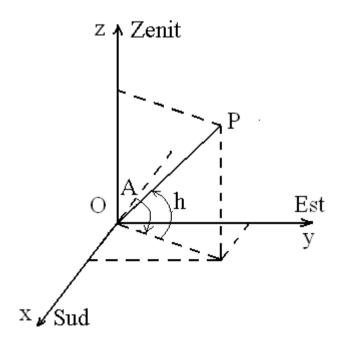
Gli angoli AÔP' e P'ÔP, che individuano il punto P sulla sfera celeste, sono nell'ordine la longitudine galattica l (elle) e la latitudine galattica b.

Entrambe si misurano in gradi, la prima da zero a 360° in verso antiorario, la seconda da zero a ±90° a seconda che P sia sopra o sotto l'equatore galattico.

Il sistema è utilizzato per in tutti i problemi che coinvolgono la localizzazione di oggetti nella Galassia.

Il piano galattico è inclinato di 62,3° rispetto all'equatore celeste.

COORDINATE	Circonferenza fondamentale	Origine	Verso	Polo	Nomi	Simboli
Orizzontali (Altazimutali)	orizzonte	Nord	N→E	zenit	azimut altezza	A h
Orarie (Equatoriali Locali)	equatore	Mezzocielo superiore	retrogrado	Polo Nord	angolo orario declinazione	H, t δ
Equatoriali (Assolute)	equatore	γ	diretto	Polo Nord	ascensione retta declinazione	$egin{array}{c} lpha \ \delta \end{array}$
Eclittiche	eclittica	γ	diretto	Polo Nord eclittica	longitudine ecl. latitudine ecl.	$egin{array}{c} \lambda \ eta \end{array}$
Galattiche	equatore galattico	definizione convenzionale	diretto	definizione convenzionale	longitudine gal. latitudine gal	l b


Il problema delle trasformazioni di coordinate è essenziale in astronomia e può essere affrontato in due modi:

- □ attraverso vettori, traslazioni e rotazioni;
- •□ attraverso la trigonometria sferica, cioè la trigonometria che si applica ai triangoli costruiti sulla superficie sferica.

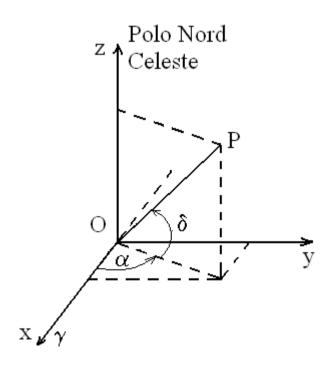
Coordinate Altazimutali: A, h

Assi: x verso Sud, z verso lo Zenit quindi y verso Est (si noti che l'asse x punta in verso opposto all'origine degli azimut).

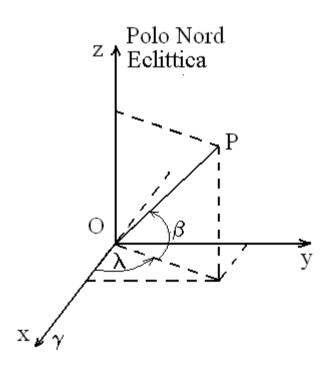

$$\begin{cases} x = -\cosh \cos A \\ y = \cosh \operatorname{sen} A \\ z = \operatorname{senh} \end{cases}$$

Coordinate Orarie: $H,\,\delta$

Assi: x verso il Mezzocielo superiore, z verso il Polo Nord Celeste quindi y verso Est.

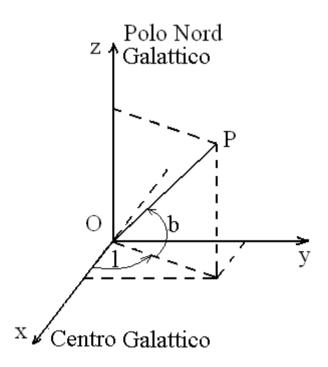

$$\begin{cases} x = \cos \delta \cos H \\ y = -\cos \delta \sin H \\ z = \sin \delta \end{cases}$$

Coordinate Equatoriali: α , δ


Assi: x verso γ, z verso il Polo Nord Celeste.

$$\begin{cases} x = \cos \delta \cos \alpha \\ y = \cos \delta \sin \alpha \\ z = \sin \delta \end{cases}$$

Coordinate Eclittiche: λ , β


Assi: x verso y, z verso il Polo Nord Eclittico.

Coordinate Galattiche: l, b

Assi: x verso il centro della Galassia, z verso il Polo Nord Galattico.

$$\begin{cases} x = \cos b \cos 1 \\ y = \cos b \sin 1 \\ z = \sin b \end{cases}$$

Traslazioni

Le traslazioni più frequenti sono la trasformazione di coordinate eliocentriche a geocentriche e quella di coordinate geocentriche a topocentriche e ovviamente quelle inverse.

Detti $\mathbf{r_e}$ e $\mathbf{r_g}$ i vettori che individuano la posizione di un oggetto nei due riferimenti eliocentrico e geocentrico rispettivamente, se $\boldsymbol{\rho}$ descrive la posizione della Terra rispetto al Sole, la trasformazione sarà allora:

$$r_e = r_g + \rho$$

In modo del tutto analogo si passa dal sistema geocentrico a quello topocentrico quando sia noto il vettore ρ ' che descrive la posizione della posizione della località rispetto al centro della Terra:

$$r_g = r_t + \rho$$

 $\mathbf{r}_{\mathbf{t}}$ dipende dal tempo a causa della rotazione terrestre, a meno che non si utilizzi un sistema locale, e il calcolo richiede la forma della Terra, delle coordinate geografiche del luogo e della sua altitudine.

Rotazioni

Le rotazione possono essere descritte da matrice 3 x 3, ma non è sempre immediato individuare l'asse e l'angolo di rotazione.

È sempre possibile ridurre una trasformazione alla composizione di più trasformazioni successive: la trasformazione richiesta è data dal prodotto delle singole matrici.

Dati due sistemi di riferimento (xyz) e (XYZ) aventi la stessa origine, per passare da uno all'altro si usano le relazioni :

$$\begin{cases} X = x \cos \widehat{xX} + y \cos \widehat{yX} + z \cos \widehat{zX} \\ Y = x \cos \widehat{xY} + y \cos \widehat{yY} + z \cos \widehat{zY} \\ X = x \cos \widehat{xZ} + y \cos \widehat{yZ} + z \cos \widehat{zZ} \end{cases}$$

Rotazioni

In forma matriciale

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{pmatrix} = \mathbf{R} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \cos \widehat{xX} & \cos \widehat{yX} & \cos \widehat{zX} \\ \cos \widehat{xY} & \cos \widehat{yY} & \cos \widehat{zY} \\ \cos \widehat{xZ} & \cos \widehat{yZ} & \cos \widehat{zZ} \end{bmatrix}$$

Da altazimutali a orarie

È una rotazione attorno all'asse y di un angolo pari alla colatitudine del luogo

$$\phi' = 90^{\circ} - \phi$$
.

$$\mathbf{R}_{\mathrm{OA}} = \begin{pmatrix} \cos\left(\frac{\pi}{2} - \phi\right) & \cos\frac{\pi}{2} & \cos\left(2\pi - \phi\right) \\ \cos\frac{\pi}{2} & \cos 0 & \cos\frac{\pi}{2} \\ \cos\left(\pi - \phi\right) & \cos\frac{\pi}{2} & \cos\left(\frac{\pi}{2} - \phi\right) \end{pmatrix} = \begin{pmatrix} \cos\phi & \cos\phi \\ 0 & 1 & 0 \\ -\cos\phi & 0 & \sin\phi \end{pmatrix}$$

Da orarie a equatoriali

È una rotazione all'asse z di un angolo Θ pari all'angolo orario del punto γ ; dipende dall'istante a cui ci si riferisce. L'angolo in questione è il tempo siderale.

$$\mathbf{R}_{EO} = \begin{pmatrix} \cos\Theta & \cos\left(\frac{\pi}{2} + \Theta\right) & \cos\frac{\pi}{2} \\ \cos\left(\Theta - \frac{\pi}{2}\right) & \cos\Theta & \cos\frac{\pi}{2} \\ \cos\frac{\pi}{2} & \cos\frac{\pi}{2} & \cos\theta \\ = \begin{pmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Da equatoriali a eclittiche

È una rotazione all'asse x di un angolo ϵ pari all'obliquità dell'eclittica.

$$\mathbf{R}_{\mathrm{CE}} = \begin{pmatrix} \cos 0 & \cos \frac{\pi}{2} & \cos \frac{\pi}{2} \\ \cos \frac{\pi}{2} & \cos \varepsilon & \cos \left(\frac{3\pi}{2} + \varepsilon \right) \\ \cos \frac{\pi}{2} & \cos \left(\frac{\pi}{2} + \varepsilon \right) & \cos \varepsilon \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varepsilon & \sin \varepsilon \\ 0 & -\sin \varepsilon & \cos \varepsilon \end{pmatrix}$$

Per ottenere le trasformazioni inverse, bisogna stare molto attenti al verso degli angoli, ma in sostanza basta porre.

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \mathbf{R}^{-1} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{pmatrix}$$

È facile notare che la matrice di rotazione inversa è la trasposta di R.

$$\mathbf{R}^{-1} = \mathbf{R}^{\mathrm{T}}$$

ricordiamo che la matrice trasposta di una matrice data si ottiene scambiando le righe con le colonne.

Sorgere e tramontare di Sirio a Camerino

Vogliamo determinare gli istanti in cui sorge e tramonta la stella Sirio dal piazzale del Dipartimento di Fisica di Camerino.

Le coordinate equatoriali di Sirio, al 2000, sono:

$$\alpha = 6h \ 45,142m;$$
 $\delta = -16^{\circ} \ 43,194'$

Le coordinate geografiche del piazzale sono:

$$\lambda = 13^{\circ} 4,067'; \quad \phi = 43^{\circ} 8,400'$$

Da

$$\cos H = -\tan \delta \tan \varphi$$

si ha

$$\cos H = -\tan(-16,7199)\tan(43,1400) = 0,2815$$

da cui segue
$$H = \pm 73,65^{\circ}$$
.

Sorgere e tramontare di Sirio a Camerino

Il valore negativo corrisponde al sorgere della stella, quello positivo al tramonto; tutto l'arco corrisponde a $147.3^{\circ} = 9h 49.2m$ che è il tempo in cui la stella Sirio rimane sopra l'orizzonte di Camerino (se fosse piatto!!!).

L'angolo orario in ore è
$$H = \pm 4h$$
 54,6m. quindi

$$TSL = \alpha + H = 6h \ 45,142m \ \pm 4h \ 54,6m$$

Sirio sorge a $TSL_S = 2h 9,5m$ tramonta è $TSL_T = 11h 39,7m$.

Rimane da stabilire come fare a trasformare il tempo siderale locale in tempo civile.

Da
$$\cos A = \frac{\sin \delta}{\cos \phi}$$
 si ricava che l'azimut di Sirio è $A_S = 113,2^{\circ}$ al

sorgere e $A_T = -113,2^\circ = 246,8^\circ$ al tramontare.